Austenitic-Grain-Size-Dependent Constitutive Model of Deformation Behavior of TRIP Steel.
نویسندگان
چکیده
منابع مشابه
Grain Size Effect on the Hot Deformation Processing Map of AISI 304 Austenitic Stainless Steel
In this study, the hot deformation processing map of AISI 304 austenitic stainless steel in two initial grain sizes of 15 and 40 μm was investigated. For this purpose, cylindrical samples were used in the hot compression test at the temperature range of 950-1100 °C and the strain rate of 0.005-0.5% s-1. At first, the relationship between the peak stress and Zener-Hollomon parameter w...
متن کاملShear and tensile plastic behavior of austenitic steel TRIP-120 compared with martensitic steel HSLA-100
Themechanical performanceofTRIP-120, a novel transformation induced plasticity steel alloy, is evaluated for different loading cases and strain rates. The performance is compared with HSLA-100, a lowalloy steel developed by the United States Navy and currently used in naval hulls. The response of these materials under uniaxial tension and shear was investigated to the point of fracture at isoth...
متن کاملThe Effect of Hot Deformation Parameters on Grain Size Refinement in a Martensitic Stainless Steel
The grain size refinement of AISI 422 martensitic stainless steel in the temperature range of 950-1150 ºC was investigated by hot deformation tests. The deformed specimens were held at deformation temperature with delay times of 5 to 300s after achieving a strain of 0.3. The austenite grains exhibit a considerable growth at temperature higher than 1050˚C, while the grain coarsening is negligibl...
متن کاملEffect of Deformation Temperature on the Mechanical Behavior of a New TRIP/TWIP Steel Containing 21% Manganese
In recent years, TRIP/TWIP steels have been the focus of great attention thanks due to their excellent tensile strength-ductility combination. The compression tests were performed at different temperatures from 25 to1000°C to study the mechanical behavior of advanced austenitic steel with 21% manganese plus bearing Ti. The results indicated that the plastic deformation is controlled by deformat...
متن کاملOn the Constitutive Model of Nitrogen-Containing Austenitic Stainless Steel 316LN at Elevated Temperature
The nitrogen-containing austenitic stainless steel 316LN has been chosen as the material for nuclear main-pipe, which is one of the key parts in 3rd generation nuclear power plants. In this research, a constitutive model of nitrogen-containing austenitic stainless steel is developed. The true stress-true strain curves obtained from isothermal hot compression tests over a wide range of temperatu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Society of Materials Science, Japan
سال: 1999
ISSN: 1880-7488,0514-5163
DOI: 10.2472/jsms.48.997